14. Let S be the focus of the parabola $y^2 = 8x$ and PQ be the common chord of the circle $x^2 + y^2 - 2x - 4y = 0$ and the given parabola. The area of ΔPQS is

Solution: -

14. PLAN Parametric coordinates for $y^2 = 4ax$ are $(at^2, 2at)$.

Description of Situation As the circle intersects the parabola at P and Q. Thus, points P and Q should satisfy circle.

$$P(2 t^{2}, 4 t) \text{ should lie on } x^{2} + y^{2} - 2x - 4y = 0$$

$$\Rightarrow 4 t^{4} + 16 t^{2} - 4 t^{2} - 16 t = 0$$

$$\Rightarrow 4 t^{4} + 12 t^{2} - 16 t = 0$$

$$\Rightarrow 4 t (t^{3} + 3 t - 4) = 0$$

$$\Rightarrow 4 t (t - 1) (t^{2} + t + 4) = 0$$

$$\therefore t = 0, 1$$

$$\Rightarrow P(2, 4) \text{ and } PQ \text{ is the diameter of circle.}$$

Thus, area of $\triangle PQS = \frac{1}{2} \cdot OS \times PQ = \frac{1}{2} \cdot (2) \cdot (4) = 4$